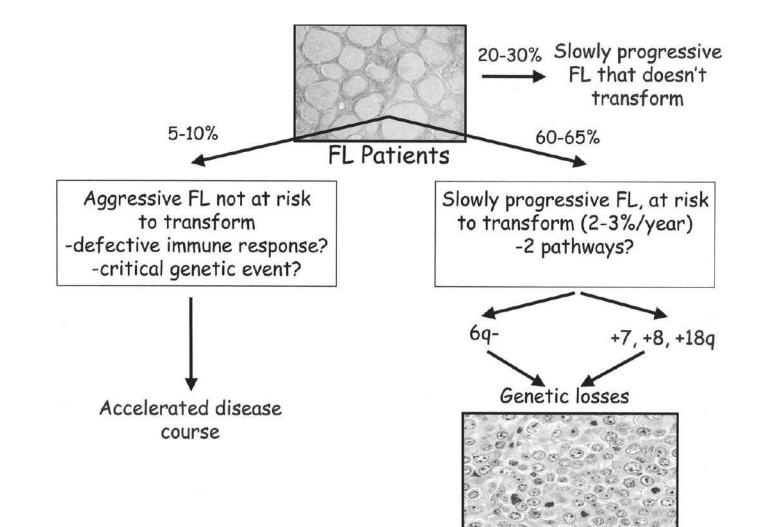
Treatment options for patients with relapsed/refractory follicular lymphoma

> Franck Morschhauser DES, 2017



Centre Hospitalier Régional Universitaire de Lille

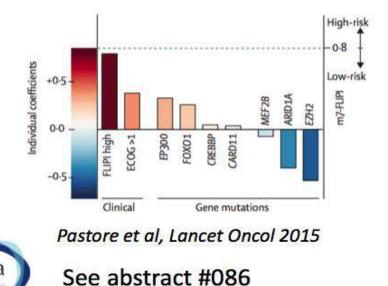
Gascoyne R D Hematology 2005;2005:299-306

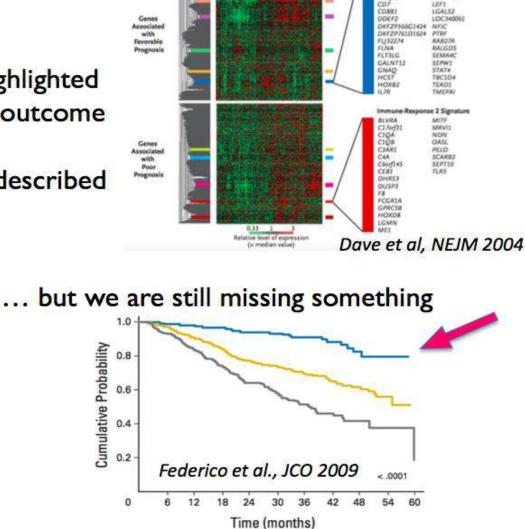
Many Treatment Options in R/R FL

- W&W
- Palliative radiotherapy
- Radiolabelled antibody
- Conventional salvage +/-R (FCM, DHAP/Ox/C, Bendamustine,...)
- Autologous transplant if chemosensitivity to salvage and/or anti-CD20 maintenance
- Allogeneic transplant
- New agents ...
 - New antibodies (afucosylated anti CD20, ADC, immune checkpoints inhibitors)
 - IMiDs-based combinations
 - BH3 mimetics, BCR pathway antagonists
 - Epigenetic modifiers (HDAC, EZH2 inhibitors)
 - CART cells?

Treatment of relapse/progression in FL Guidance tools

Treatment choice depends on


- Line of relapse: 1st, 2nd, >2nd
- Refractory disease
- Time to progression
 - Early PD :POD12? POD24?
 - Late PD > 24 Mo? > Presumed median PFS?
- Previous treatment(s)
- Histological transformation
- Patient's age, comorbidities
- Patient wishes


. . . .

CAN WE PREDICT OUTCOME OF FL PATIENTS ?

- Patients with follicular lymphoma (FL) have heterogeneous outcomes
- Gene-expression profiling studies highlighted the role of non-tumor subsets in FL outcome
- Clinicogenetic risk models recently described

Training Set of Tumor

Specimens (N=95)

onse 1 Signature

KLAA2228

INPP3 ITX

14.44

47544

INVACE 5289004

TNFRSF18

TNFRSF25

TNFSF12

2NFSF238

Can we predict early POD or refractory FL?

- FLIPI 1? FLIPI 2 (revised)
- Immunohistochemistry (IHC)?
- PET? SUV max? Tumor volume (TMTV)?
- Gene expression profiling (GEP)?
- Combined clinico-biologic models (m7-FLIPI, POD 24-PI;TMTV0+FLIPI2)?

Not yet but work in progress!

Treatment of first relapse

- Objectives
 - To achieve the longest survival
 - To reach the longest disease control (PFS)
 - Try to achieve a 2nd CR?
 - Preserve quality of life and use less toxic regimens even if less CRs?
 - Avoid long-term toxicity

ESMO Clinical Practice Guidelines FL 2016

Dependent on first-line regimen and remission duration

- Chemoimmunotherapy + rituximab
- maintenance (every 3 months, up to 2 years)
 - · Alternatively, radioimmunotherapy
 - In early relapses, discuss high-dose consolidation with ASCT^b

Dependent on first-line regimen and remission duration

 Chemoimmunotherapy (e.g BR, R-CHOP, R-CVP) +/- rituximab maintenance (every 3 months, up to 2 years)
 Alternatively, radioimmunotherapy

Later relapse/progression

Relapse/progression

 Dependent on prior regimens and remission duration
 Chemoimmunotherapy (long prior remission)
 + rituximab maintenance (if not previously applied)
 In early relapses, discuss high-dose consolidation with ASCT^b
 Radioimmunotherapy or rituximab monotherapy
 Idelalisib (double refractory cases)

· In selected cases, discuss allogeneic transplantation

Dependent on prior regimens and remission duration

Chemoimmunotherapy (long prior remission)
 + rituximab maintenance (if not previously applied)
 Radioimmunotherapy or rituximab monotherapy
 Idelalisib (double refractory cases)

Main questions in the treatment of R/R FL

– ASCT or not ASCT as part of second-line?

- If yes, for whom?
- New anti-CD20 MoAbs?
 - Why can they overcome resistance to rituximab?
- New agents beyond anti-CD20?
 - Targeting both tumor and immune contexture
- Allo SCT or CART cells: who and when?

Autogreffe : des études pré-rituximab

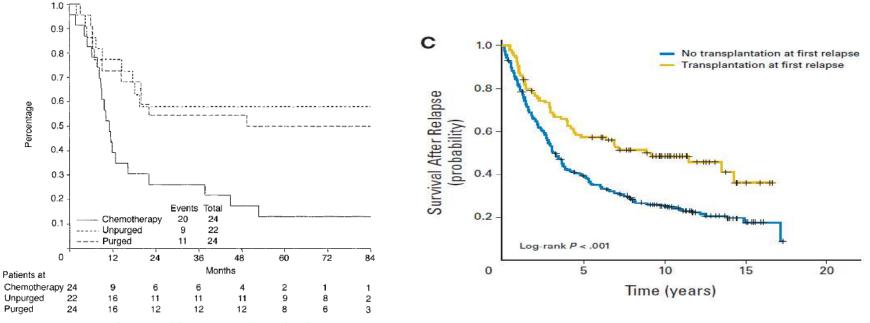
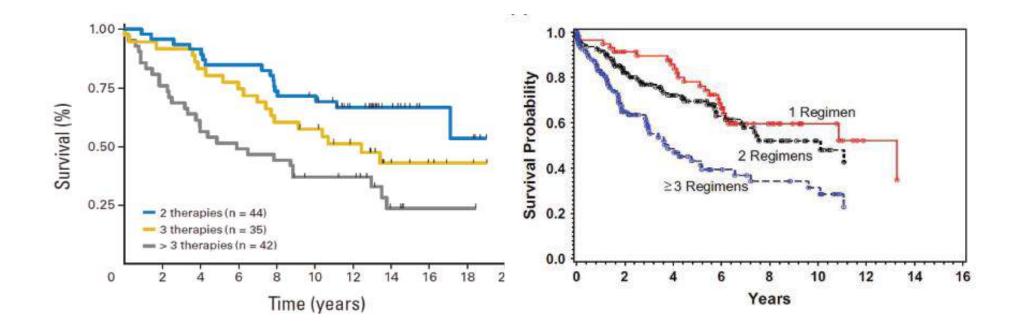



Fig 4. Progression-free survival for patients randomized to three arms.

Impact des traitements antérieurs

Rohatiner et al. *J Clin Oncol* 2007 Vose et al. *Biol Bone Marrow Transplant* 2008

FL2000 : impact de l'autoreffe à la rechute

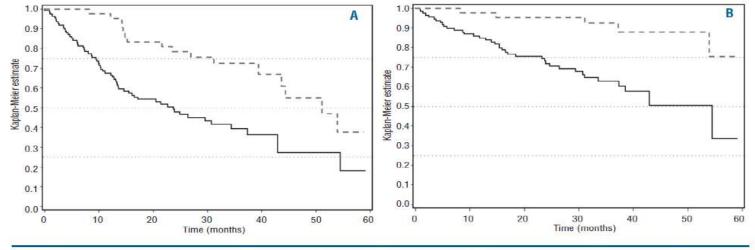


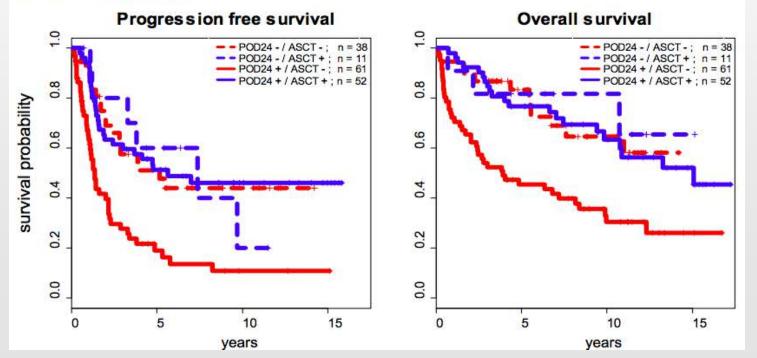
Figure 2. Outcome of patients (under the age of 70 years) according to transplantation at first progression: ----transplanted patients (n=42); ----- non-transplanted patients (n=111). (A) Event-free survival (P=0.0005). (B) Overall survival (P=0.0003).

N=153 rechutes de moins de 70 ans, 42 patients autogreffés (28%) N=105 biopsies, N=14 transformations histologiques Impact sur la survie globale en particulier dans les rechutes Le Gouill et al. Haematoloprécoces

Impact du Rituximab : rechute du FL2000

	EFS			OS								
	HR	Univariate 95% Cl	P value	HR	Multivariat 95% Cl	e P value	HR	Univariate 95% Cl	P value	HR N	Aultivariate 95% Cl	
Age at progression	1.02	1-1.04	0.033	1.01	1-1.04	0.3	1.04	1.01-1.07	0.0036	1.03	1-1.06	0.075
Sex	1.4	0.92-2.14	0.11	1.5	0.95-2.4	0.08	1.44	0.83-2.5	0.2	-	-	-
First-line CHVP-I vs. R-CHVP-I	0.75	0.48-1.17	0.2	0.78	0.47-1.3	0.33	1.09	0.62-1.9	0.77	-	-	40
FLIPI score (reference=0-1) vs. 2 vs. 3-5	0.46 1.9	0.27-0.8 1.2-3	0.013	0.38 0.63	0.17-0.85 0.31-1.3	0.0517	0.49 3.09	0.24-1 1.58-6.05	<mark>0.0045</mark>	1.48 2.5	0.31-7.12 0.58-10.8	
Progression/relapse period Induction vs. follow up Consolidation vs. follow up	1.64 1.9	1.03-2.63 1.14-3.13	0.001	2.5 2.76	1.4-4.38 1.55-4.9	0.004	1.98 2.25	1.1-3.56 1.22-4.14	0.0004	4.08 3.83	1.97-8.4 1.83-8	0.0001
Chemotherapy type at first relapse Fludarabine-based <i>vs.</i> other Anthracycline-based <i>vs.</i> other Cytarabine-based <i>vs.</i> other Cyclophosphamide-based <i>vs.</i> other	1.17 1 0.93 1	0.68-2 0.6-1.63 0.57-1.52 0.61-1.63	0.58 0.95 0.78 0.98	1 1 1			1.63 1.54 1.38 1.04	0.85-3.11 0.84-2.82 0.76-2.5 0.56-1.96	0.14 0.16 0.29 0.9			
Rituximab at progression (Yes vs. No)	0.66	0.42-1.05	0.077	0.65	0.4-1.08	0.095	0.99	0.54-1.8	0.96	2 -	-	÷
Transplantation at progression (Yes <i>vs</i> . No)	0.41	0.24-0.71	0.0015	0.38	0.2-0.72	0.003	0.22	0.09-0.56	0.0014	0.26	0.1-0.68	0.006

Rituximab la rechute : CHVP 73%, R-CHVP 50% Bénéfice limité aux patients du bras CHVP-i


Autologous Stem Cell Transplantation for Patients with Early Progression of FL Retrospective Analysis of 2 Randomized Trials of the GLSG

Applied treatment strategies for patients with or without POD24

	ASCT	no ASCT
POD24	52	61
no POD24	11	38

Patients with POD24 were significantly more likely to receive ASCT as 2^{nd} -line treatment (p = 0.0080).

Treatment outcome for patients with or without POD24 by ASCT vs no ASCT

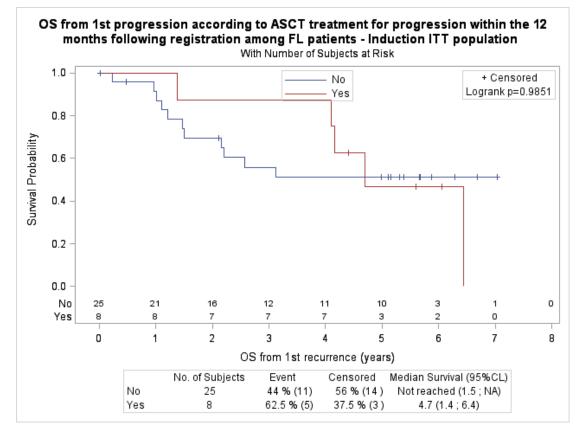
SdV Oct 2011

Jurinovic & Weigert, ASH 2016

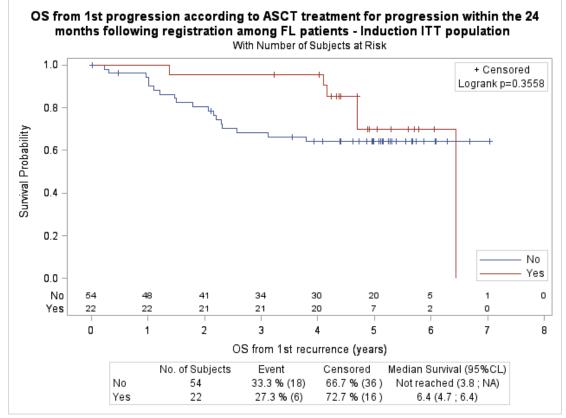
Autologous Stem Cell Transplantation for Patients with Early Progression of FL Retrospective Analysis of 2 Randomized Trials of the GLSG

Patient	characteristics	for POD24	cohort
---------	-----------------	-----------	--------

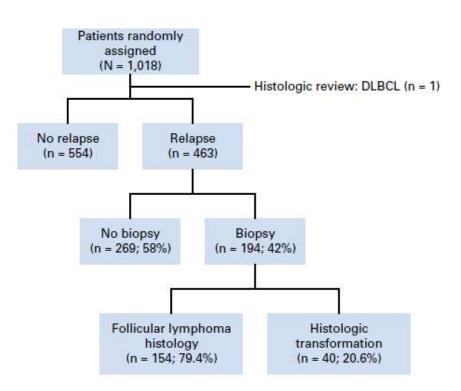
Patients with POD24 (n=113)	ASCT (n=52)	no ASCT (n=61)	<i>p</i> -value
male	73%	51%	0.026
1 st -line MC	CP 10%	20%	
treatment CHO	P 71%	72%	0.11
R-CHC	DP 19%	8%	
age (yrs)	48	52	0.014
>4 LN areas (evaluable n=92)	37%	31%	0.65
elevated LDH (evaluable n=73)	14%	41%	0.022
low Hb (evaluable n=83)	18%	41%	0.042
ECOG > 1 (evaluable n=77)	7%	11%	0.91
FLIPI 1st-line lo	w 10%	10%	
(evaluable intermedia	te 51%	44%	0.76
n=112) hig	h 39%	46%	
Rituximab 1 st -line	19%	8%	0.15
Rituximab 2 nd -line	48%	48%	>0.99



Jurinovic & Weigert, ASH 2016


PRIMA

No OS benefit for ASCT in FL patients with early POD


ASCT or not for FL with POD12

ASCT or not for FL with POD24

ASCT at relapse/progression in PRIMA Histological transformation

Most of HT occured in the first year after randomization

- with a median time from randomization of 9.6 months
- compared to 22.8 months for progression with FL histology

Cumulative incidence of HT:

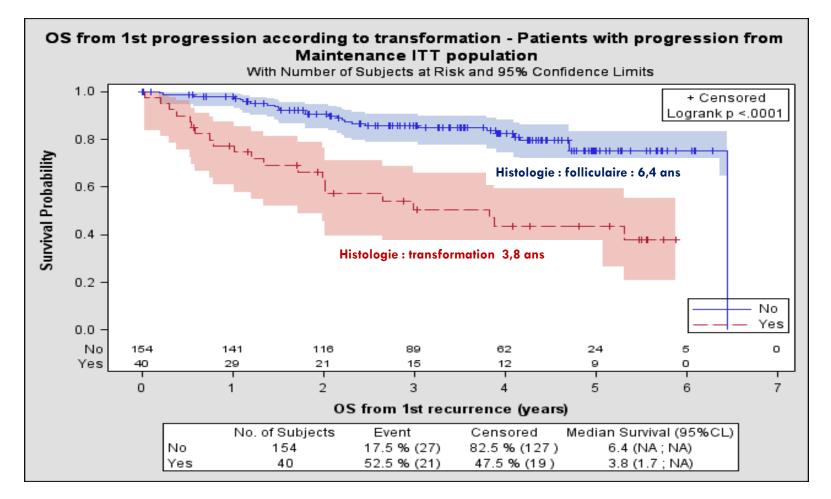
- 2.4% at 1 year
- 3.8% at 5 years
- Between 1-6 years: < 2%

If extrapolating to all patients (those with and without biopsy all included): 9.4% at 6 years

Sarkozy et al, JCO 2016

Facteurs de risque de transformation

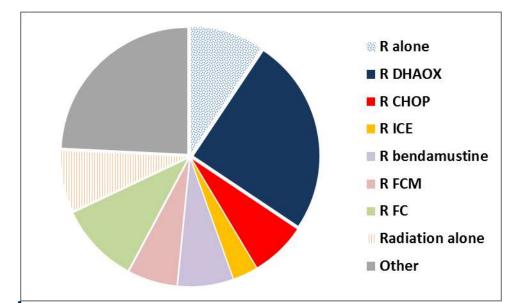
At diagnosis	No transformation, N=708	Histological transformation, N=40	Test
Age (median)	57	57	P=0.84
Gender (F)	50,6%	40%	P=0.19
FL grade (1/2/3)	43%/36%/21%	20%/47%/33%	P=0.02
Performance Status (2-4)	2,7%	15%	P<0.001
B symtoms (yes)	29,8%	45%	P=0.042
N extra-nodal sites	1,4 (mean)	1,6 (mean)	P=0.33
N nodal sites	5 (mean)	5,4 (mean)	P=0.29
Bulky disease (yes)	47,4%	56,4%	P=0.27
Ann Arbor stage (3-4)	88,6%	97,5	P=0.11
Anemia	17,9%	40%	P<0.001
LDH>N	31%	47%	P=0.029
FLIPI (0-1/2/3-5)	25%/35%/40%	7,5%30%/62,5%	P=0.007
Albumin < 35 g/L	8,4%	18,2%	P=0,105
B2microglobulin>3	27%	30,6%	P=0,605


Analyse multivariée : seuls PS≥2 et anémie <12g/dL étaient associés à une transformation à la rechute

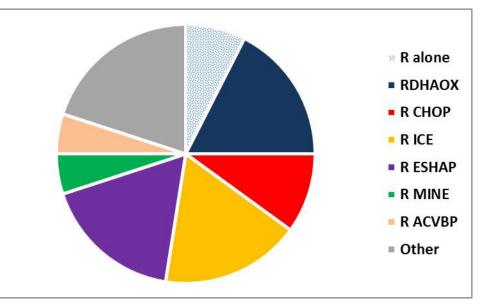
Pas d'impact de : chimiothérapie initiale, qualité de la réponse,

Sarkozy et al, J Clin Oncol 2016 entretien

Pronostic de l'analyse histologique (1)

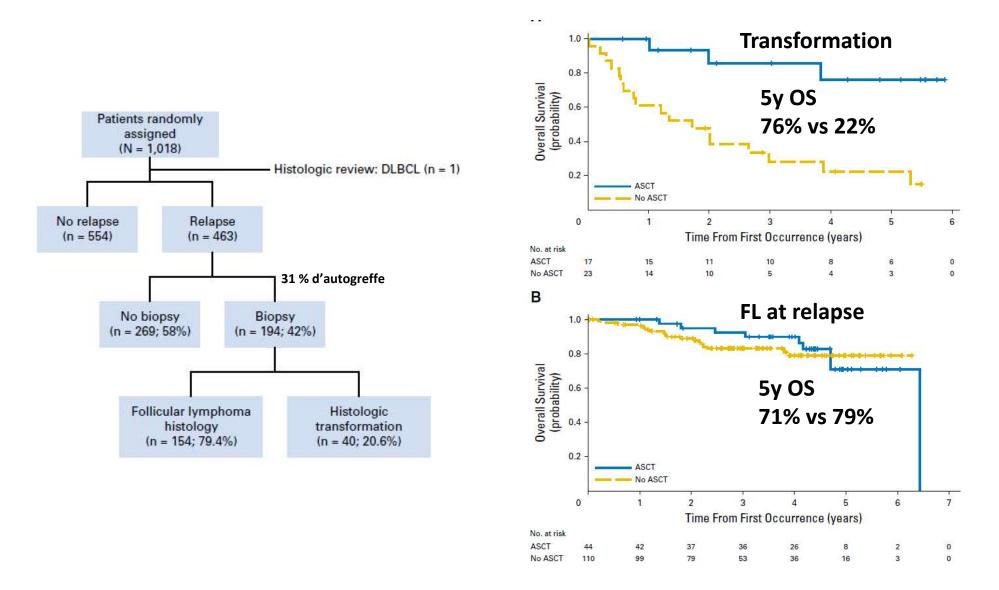


Sarkozy et al, J Clin Oncol 2016

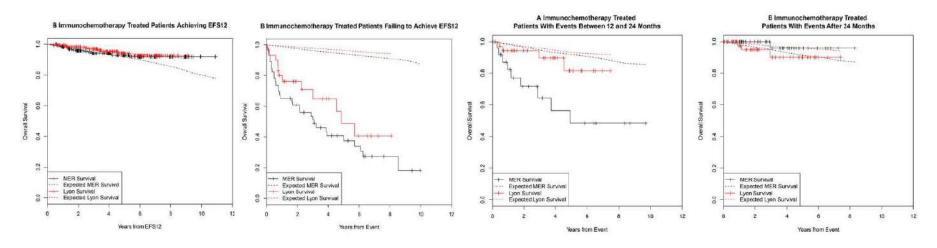

Results: salvage in PRIMA

Follicular lymphoma histology

73% treated immediatly Various regimen including R alone, radiation therapy or R-chemo ASCT: 44 (28%)

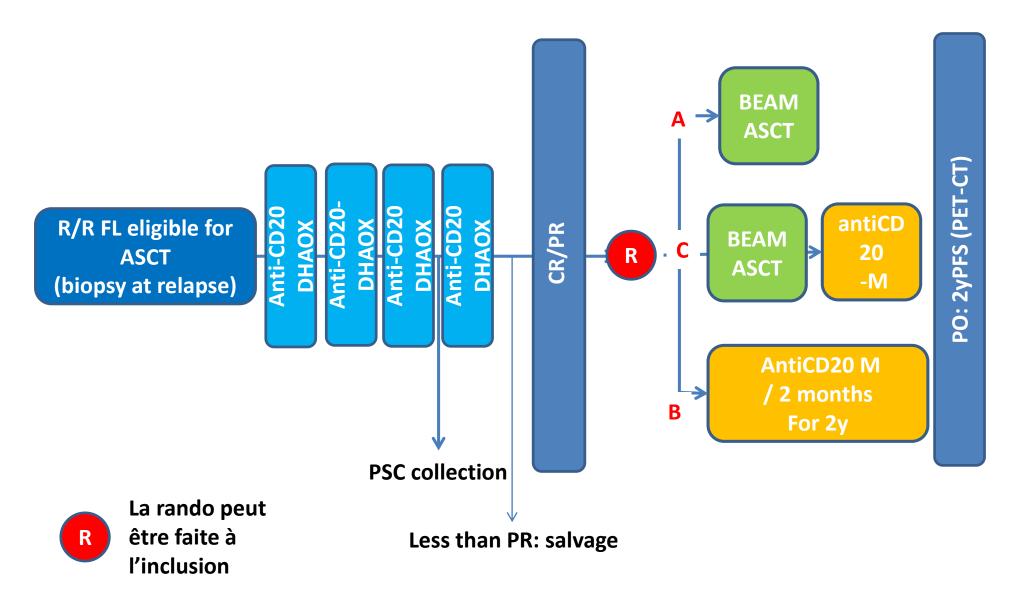

Histological transformation

86% treated immediatly R alone, DLBCL-like treatment (R-chemo, intensive regimen) ASCT: 17 (42%)


ASCT at relapse/progression in PRIMA Patients with an HT derive benefit from ASCT

Sarkozy et al, JCO 2016

EFS12 ET EFS 24



	Cohorte MER	Cohorte Lyon
Ν	920 patients Traitements : w&w 33% ; R-mono 12% ; R- chimio 38%.	412 patients Traitements : w&w 20% ; R-mono 10% ; R- chimio 59%.
EFS 12	83%,	82%
EFS 24	71%	67%

Maurer et al, Ann Hematol 2016

Phase 3 to answer the question

Take home messages

- Biopsie à la rechute : éliminer transformation
 - D'autant que : hypermétabolisme important, rechute précoce
 - Car impact pronostic
 - Car impact thérapeutique : indication autogreffe plus formelle
- Autogreffe à la rechute
 - Incontournable si transformation, plus discutable sinon
- Rituximab à la rechute
 - Pas d'impact démontré si rituximab en première ligne

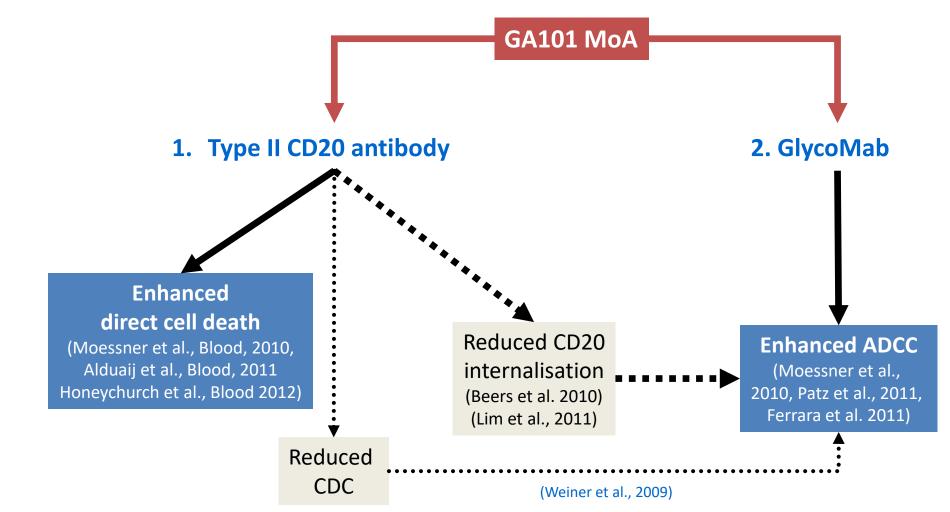
Main questions in the treatment of R/R FL

– ASCT or not ASCT as part of second-line?

If yes, for whom?

– New anti-CD20 MoAbs?

- Why can they overcome resistance to rituximab?
- New agents beyond anti-CD20?
 - Targeting both tumor and immune contexture
- Allo SCT or CART cells: who and when?

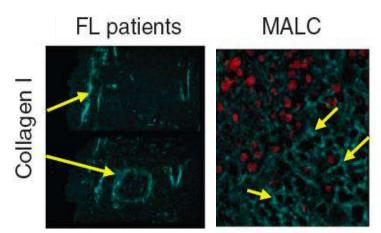


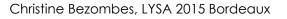
Mecanisms of resistance to rituximab

- Loss of CD20
 - true mechanism of resistance but rare, mainly documented in DLBCL
- CD20 « Shaving »
 - has been proposed in CLL, but no clear data in FL
- Loss of direct effects "signaling" has been looked at in cell lines,
 but not any convincing patient derived info.
- Combination of loss of « signaling » and loss of immune effector cells and resistance to immune mediated cell killing mostly with ADCC.
- Dose related issues
 - this has been very hard to show.
 - No one has done the experiment to see if patients not responding to a standard dose will respond to a much higher dose...

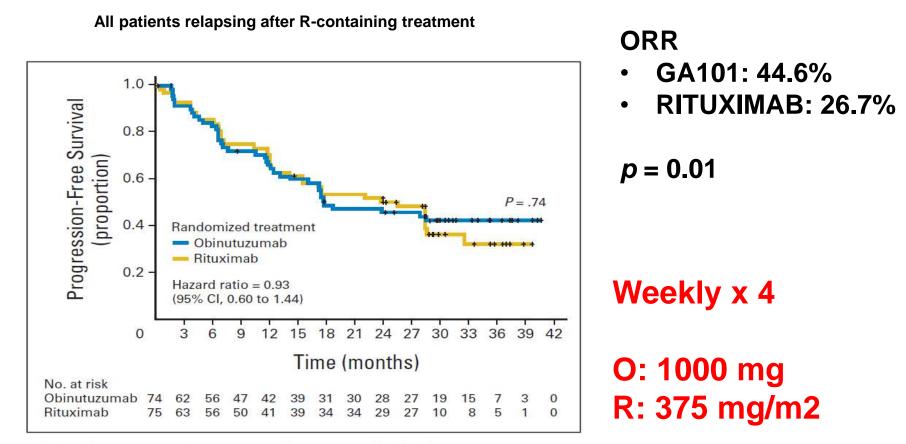
GA101 putative mechanisms of action

Moessner et al., Blood, 2010; Niederfellner et al., Blood, 2011; Dalle et al., Mol Cancer Ther, 2011; Jak et al., Blood, 2011; Alduaij et al., Blood, 2011; Lim et al., Blood, 2011; Honeychurch et al., Blood, 2012; Pievani et al., Blood, 2011; Bologna et al., J Immunol, 2011; Braza et al., Haematologica, 2011; Patz et al., B J Haematol, 2011; Paz-Ares et al., J Clin Oncol, 2011; Ferrara et al, PNAS, 2011; Weiner et al., 2009; Beers et al, 2010




3D organisation is key for penetration of therapies

Rituximab 24h


Obinutuzumab 24h

Obinutuzumab vs rituximab with maintenance in relapsed iNHL: the GAUSS study

Fig 2. Progression-free survival of patients with follicular lymphoma treated with obinutuzumab versus rituximab monotherapy.

GAUGUIN iNHL Phase II: EoTR

EoTR was 50% in patients with FL receiving GA101 1600/800 mg

Cohort	CR	PR	SD	PD	ORR*				
All patients (n=40)	All patients (n=40)								
1600/800 mg (n=22)	2	10	6	4	55%				
400 mg (n=18)	0	3	6	9	17%				
Rituximab-refractory pati	ents (n=22)								
1600/800 mg (n=10)	1	4	3	2	50%				
400 mg (n=12)	0	1	4	7	8%				
FL patients (n=34)									
1600/800 mg (n=20)	2	8	6	4	50%				
400 mg (n=14)	0	3	4	7	21%				

* ORR based on evaluable patients

Salles G, et al. Oral presentation at ASH 2011 (Abstract 268);

Salles G, et al. Oral presentation at ICML 2011 (Abstract 066);

Salles G, et al. Oral presentation at EHA 2010 (Abstract 0558); Roche/Genentech. Data on file

GADOLIN Outcome- ASH 2016

	ITT Population G-B vs B	LF G-B vs B
Median PFS	25.8 mo vs, 14.1 mo HR 0.57 (95% CI 0.44, 0.73; p<0.0001)	25.3 mo vs. 14.0 mo HR 0.52 (95% CI 0.39, 0.69; p<0.0001)
Median OS	Non reached HR 0.67 (95% CI 0.47, 0.96; p=0.0269)	Non reached vs. 53.9 mo HR 0.58 (95% CI 0.39, 0.86; p=0.0061)
TTNT <i>Time to</i> <i>new anti-</i> <i>lymphoma</i> <i>treatment</i>	40.8 mo vs. 19.4 mo HR 0.59 (95% Cl 0.45, 0.77)	33.6 mo vs. 18.0 mo HR 0.57 (95% Cl 0.43, 0.75]).

Median FU : 31,8 months

Cheson et al, ASH 2016, Abstract 615

GADOLIN

Grade 3–5 adverse events in the iNHL population

Grade 3–5 AEs of interest by treatment arm and treatment phase

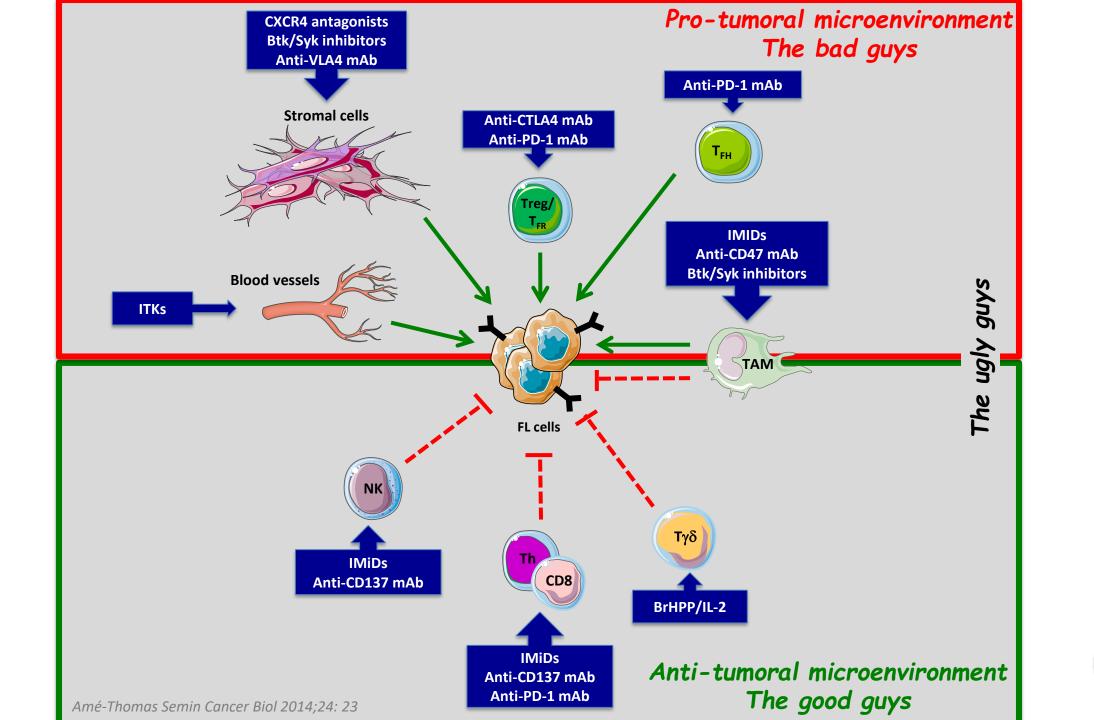
	Induction		<i>Maintenan</i> ce	Ove	erall
% (n)	G-B, n=204	B, n=205†	G-B, n=158*	G-B, n=204	B, n=203*
Neutropenia [‡]	27.5 (56)	26.8 (55)	10.8 (17)	34.8 (71)	27.1 (55)
Thrombocytopenia [‡]	10.3 (21)	15.6 (32)	1.3 (2)	10.8 (22)	15.8 (32)
Infections and infestations [§]	7.8 (16)	12.2 (25)	10.1 (16)	22.5 (46)	19.2 (39)
Infusion-related reactions [‡]	8.8 (18)	3.4 (7)	0.6 (1)	9.3 (19)	3.4 (7)
Neoplasms ^{§¶}	1.0 (2)	1.0 (2)	2.5 (4)	5.9 (12)	5.4 (11)
Cardiac disorders§**	2.5 (5)	1.0 (2)	1.9 (3)	4.4 (9)	1.5 (3)

Main questions in the treatment of R/R FL

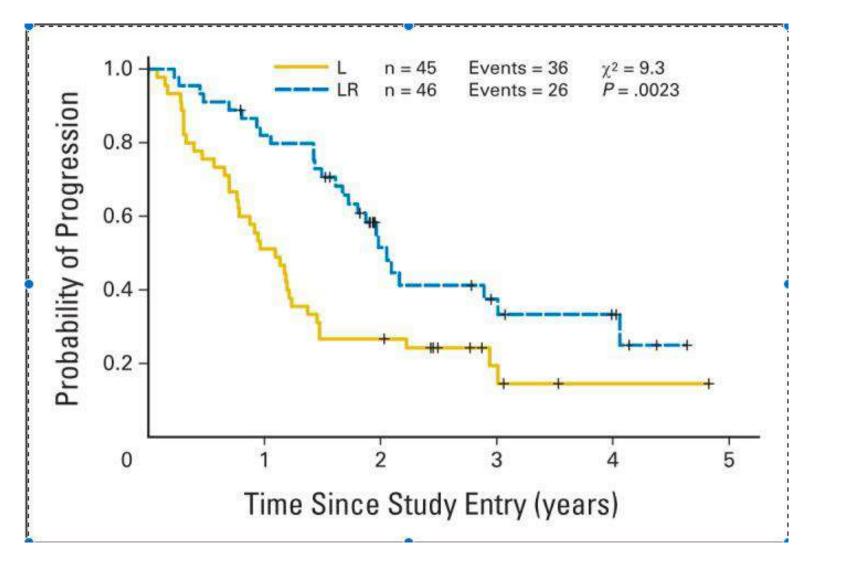
– ASCT or not ASCT as part of second-line?

If yes, for whom?

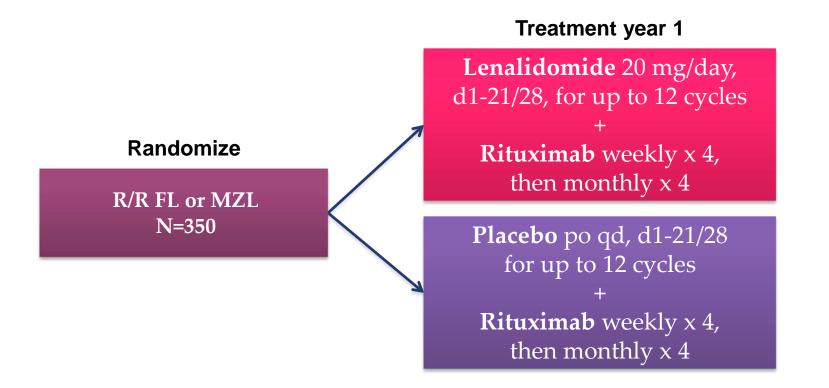
– New anti-CD20 MoAbs?


Why can they overcome resistance to rituximab?

– New agents beyond anti-CD20?


Targeting both tumor and immune contexture

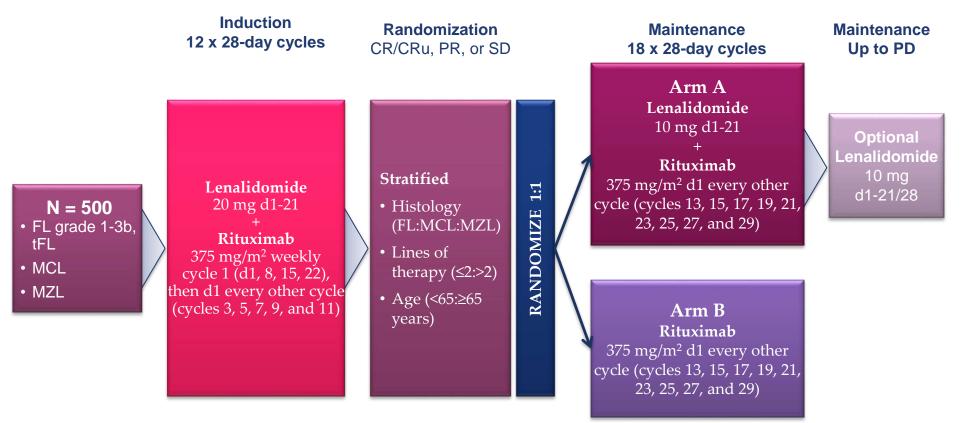
– Allo SCT or CART cells: who and when?



Lenalidomide versus R2 in relapsed FL Median TTP: 1 v 2 years

NHL-007 (AUGMENT): Phase 3 Registration Study of R vs. R² in R/R iNHL

Primary endpoint: PFS **Secondary endpoints:** ORR, CR, DOR, safety, SPM

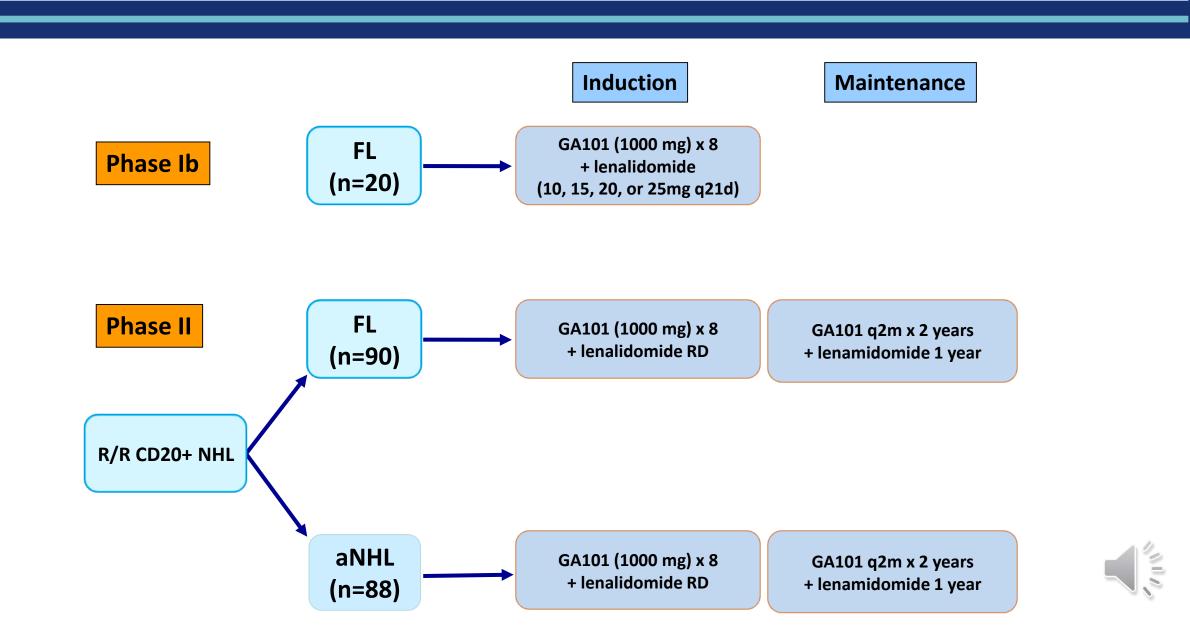


NCT01938001.

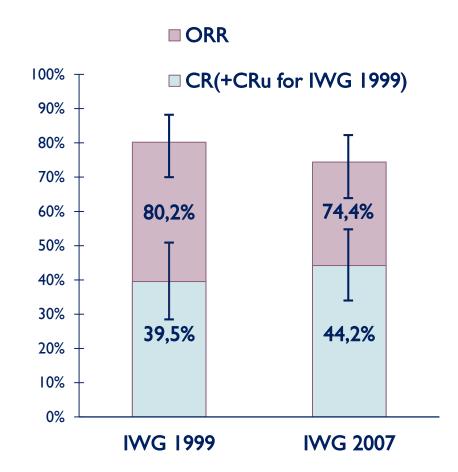
49

NHL-008 (MAGNIFY): R2 in R/R FL, tFL, MCL, and MZL

Phase 3 Study of R² Followed by R Maintenance vs. R² Followed by Lenalidomide Maintenance in R/R FL, MCL, MZL

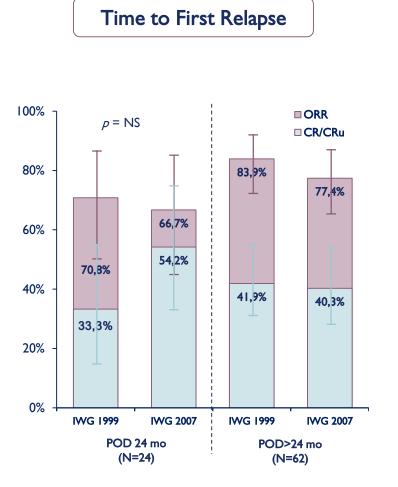

Primary endpoint: PFS (191 maintenance events needed) **Secondary endpoints:** OS, IOR, ORR, CR, DOR, DOCR, TTNLT, TTHT, safety **Exploratory:** subgroup analysis of efficacy and safety by histology and QOL

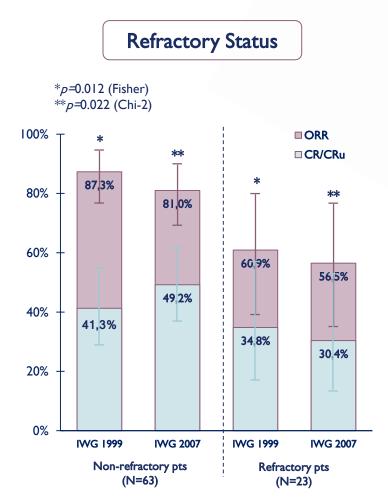
NCT01996865.


50

CONFIDENTIAL

GALEN – Phase Ib/II


RESPONSE RATES: END OF INDUCTION

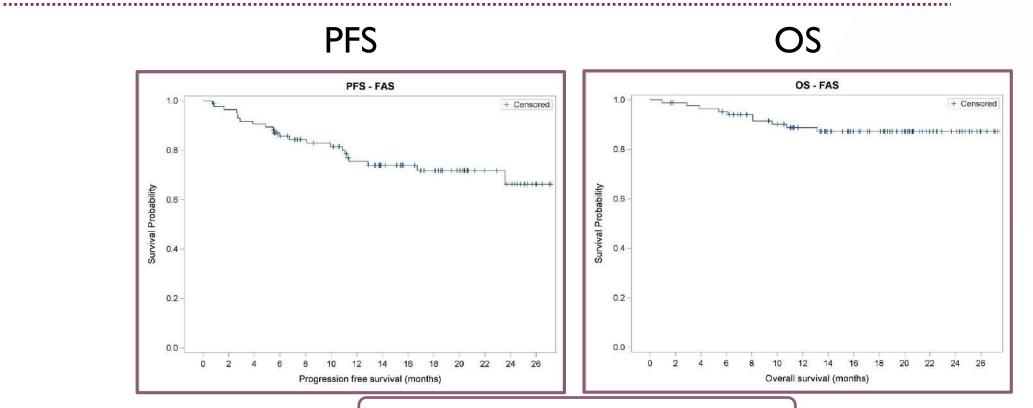


Morschhauser et al, ICML 2017

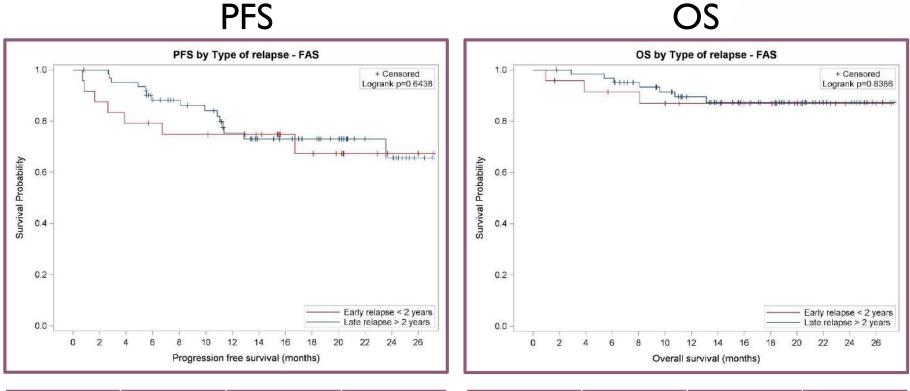
RESPONSE RATES: END OF INDUCTION

MAGNIFY

Best response for evaluable patients in induction and maintenance.							
Response status, n (%)	DR (n = 28)	ER (n = 33)	All FL (N = 91)				
ORR 95% CI	13 (46) 28%-61%	<mark>16 (48)</mark> 31%-67%	61 (67) 56%-77%				
CR/CRu	6 (21)	4 (12)	<mark>33 (</mark> 36)				
PR	7 (25)	12 (36)	28 (31)				
SD	10 (36)	13 (39)	21 (23)				
PD*	5 (18)	4 (12)	9 (10)				

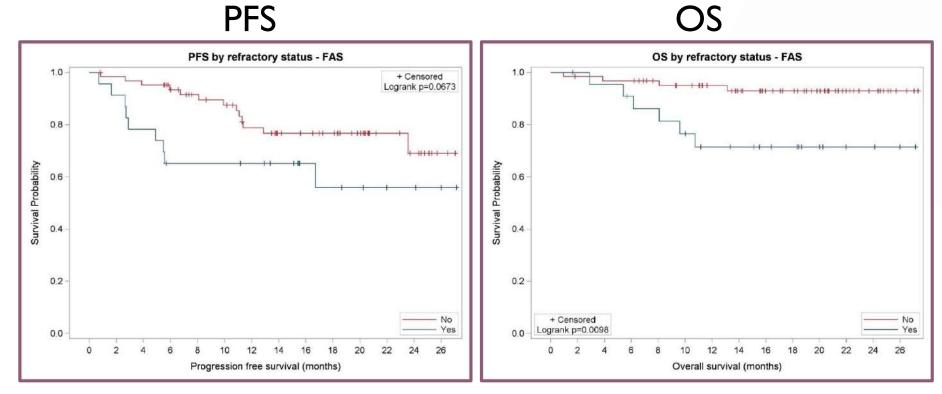

*Includes PD and/or death prior to response evaluation completion.

Andorsky et al, ASCO 2017



• Median FU = 18.1 months

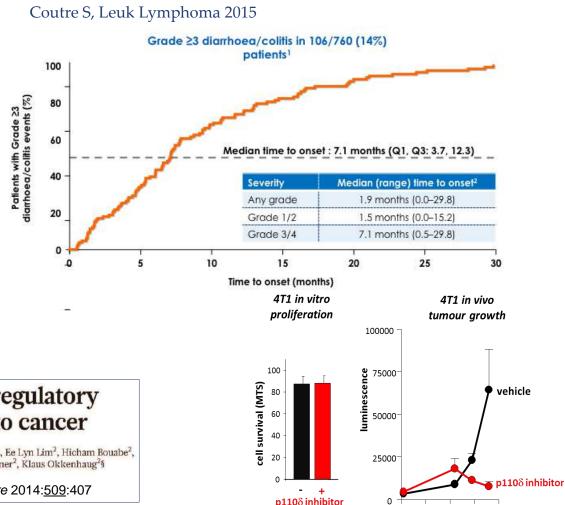
OUTCOME	All pts (N=86)		
I-y PFS % (95%CI)	75.5 (64.2-83.7)		
I -y OS % (95%CI)	88.8 (79.5-94.0)		


OUTCOME BASED ON POD24 OR POD>24MO

	POD24 (N=24)	POD>24m (N=62)	All pts (N=86)		POD24 (N=24)	POD>24 (N=62)	All pts (N=86)
I -y PFS %	74.8	75.3	75.5	l -y OS %	86.9	89.5	88.8
(95%CI)	52.2-87.8	60.9-85.0	64.2-83.7	(95%Cl)	64.6-95.6	78.1-95.2	79.5-94.0

OUTCOME BASED ON REFRACTORY STATUS

	Ref (N=23)	Non-Ref (N=63)	All pts (N=86)		Ref (N=23)	Non-Ref (N=63)	All pts (N=86)
l -y PFS %	65.2	78.9	75.5	l -y OS %	71.5	95.0	88.8
(95%Cl)	42.3-80.8	64.9-87.8	64.2-83.7	(95%Cl)	47.1-86.1	85.4-98.4	79.5-94.0



Treg inhibition with idelalisib ?

Impaired B and T Cell Antigen Receptor Signaling in p110 δ PI 3-Kinase Mutant Mice

Klaus Okkenhaug,¹ Antonio Bilancio,^{1*} Géraldine Farjot,^{1*} Helen Priddle, 2*† Sara Sancho, 3 Emma Peskett, 1 Wayne Pearce, 1 Stephen E. Meek,² Ashreena Salpekar,¹ Michael D. Waterfield,^{1,4} Andrew J. H. Smith,² Bart Vanhaesebroeck^{1,4}

Class IA phosphoinositide 3-kinases (PI3Ks) are a family of p85/p110 heterodimeric lipid kinases that generate second messenger signals downstream of tyrosine kinases, thereby controlling cell metabolism, growth, proliferation, differentiation, motility, and survival. Mammals express three class IA catalytic subunits: $p110\alpha$, $p110\beta$, and $p110\delta$. It is unclear to what extent these p110isoforms have overlapping or distinct biological roles. Mice expressing a catalytically inactive form of p1108 (p1108D910A) were generated by gene targeting. Antigen receptor signaling in B and T cells was impaired and immune responses in vivo were attenuated in p1108 mutant mice. They also developed nflammatory bowel disease. These results reveal a selective role for p1108 in immunity.

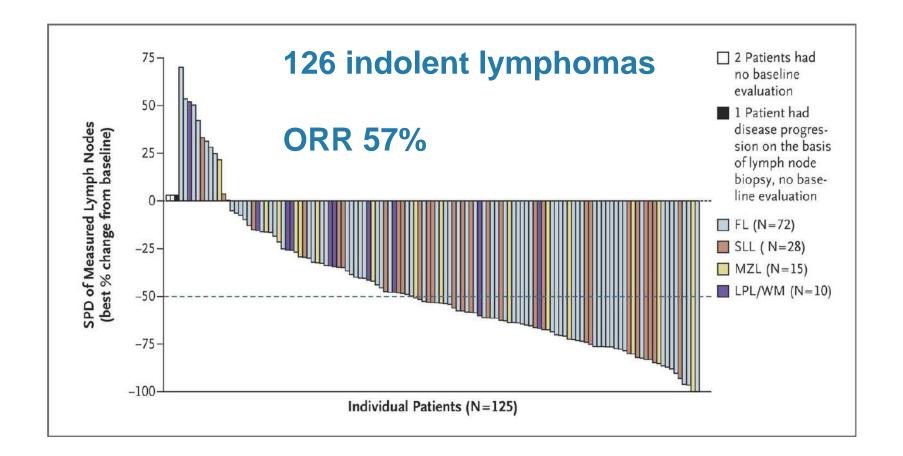
10 20

0

30

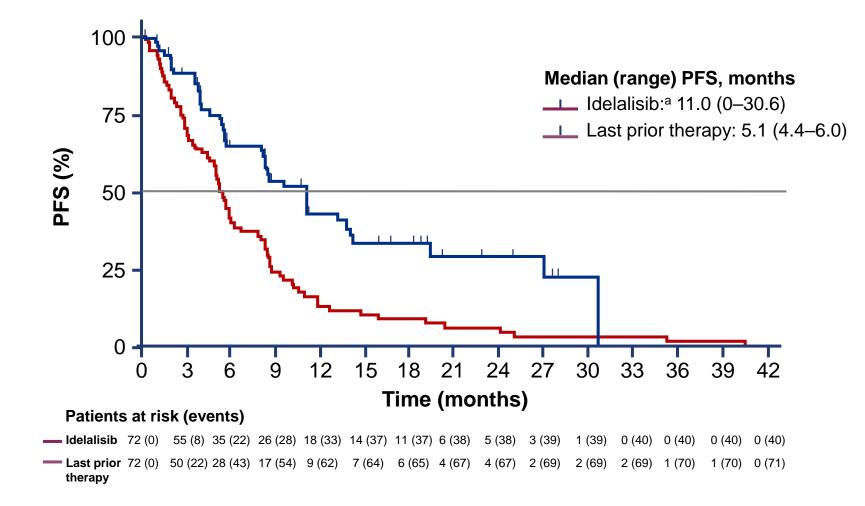
40

Inactivation of PI(3)K p110δ breaks regulatory T-cell-mediated immune tolerance to cancer

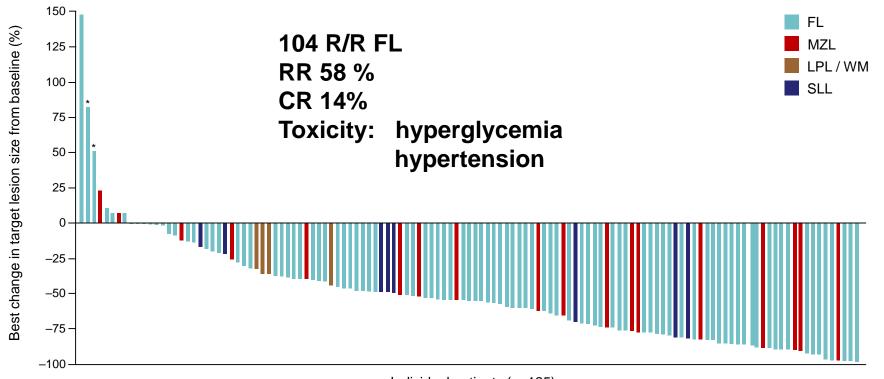

Khaled Ali¹[†], Dalya R. Soond²*[†], Roberto Piñeiro¹*, Thorsten Hagemann³, Wayne Pearce¹, Ee Lyn Lim², Hicham Bouabe², Cheryl L. Scudamore⁴, Timothy Hancox⁵, Heather Maecker⁶, Lori Friedman⁶, Martin Turner², Klaus Okkenhaug²§ & Bart Vanhaesebroeck¹§

Nature 2014:509:407

PI-3K₀ inhibition blocks Treg differentiation favoring CTL expansion day of treatment This immunomodulatory effect is INdependent from PI-3K δ activity within tumor cells

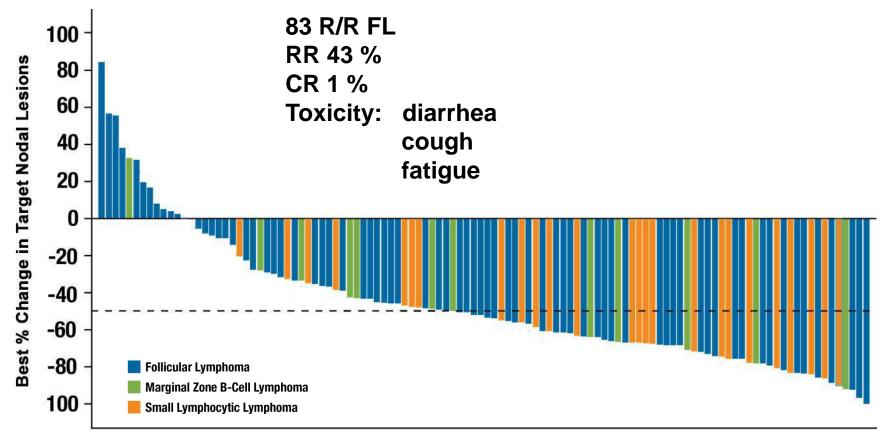


Idelalisib approved for R/R iNHL



Study 101-09 Idelalisib : PFS vs. last prior therapy FL subgroup

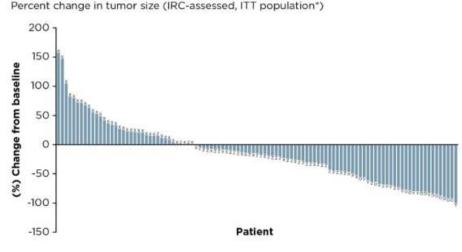
i.v. Copanlisib in R/R NHL


Individual patients (n=125)

Dreyling et al, ICML 2017, abstract 108

Zinzani et al, ICML 2017, abstr 58

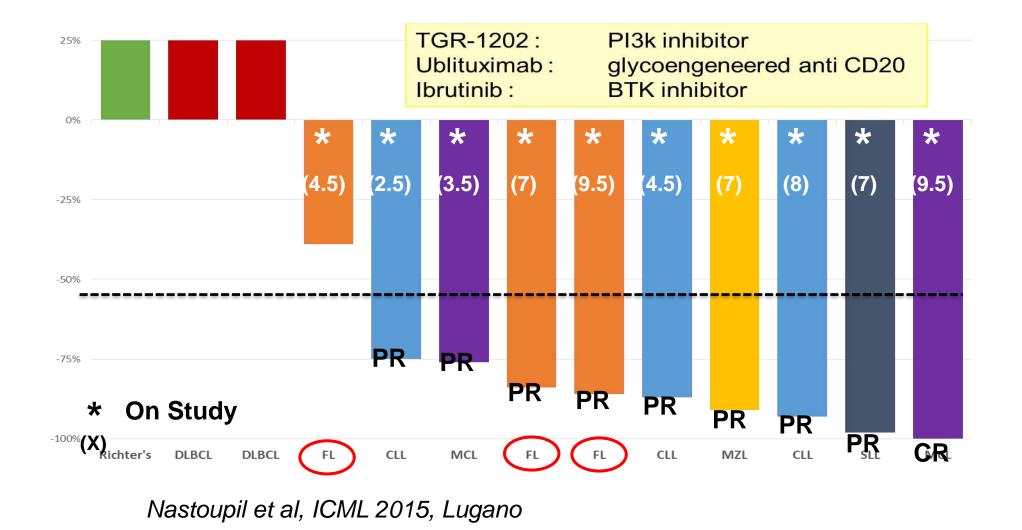
Duvelisib in double refractory indolent NHL


Subjects

Zinzani et al, ICML 2017, abstr 58

Ibrutinib in R/R FL (DAWN trial)

When it works...How does it work? Tumor inhibition or T-cell ITK inhibition?


O=CR, Y=PR, Z=SD and X=PD

*Only pts with both baseline and at least 1 post-baseline tumor measurement (105 out of 110 pts) are included in the graph.

- Single agent ibrutinib has modest antitumor activity in 110 relapsed or refractory (41%) FL with an ORR of 21% (11%CR)
 - Suggestion that ORR higher in rituximab sensitive disease median PFS of 4.6 months
 - Median duration of response:19.4 months
- safety profile in FL consistent with labeled indications

"Triplet": TGR-1202 + Ublituximab + Ibrutinib

Combinations of targeted drugs can be unexpectedly toxic!

Rituximab + Lenalidomide + Idelalisib (R²-Idela)

Smith S. et al (Alliance) ASH 2014

8 patients

Cheah C. et al (MDACC) Blood 2015

7 patients

4 DLT Hepatotoxicity Septic syndrome 6 DLT Hepatotoxicity

2 died of it

Explanation: probably excessive immune activation

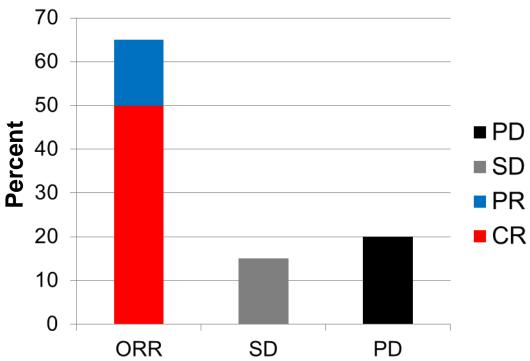
PD-1/PD-L1 immunostat in FL

- Only few infiltrating Macrophages but no tumors cells express PD-L1
- Strong expression of PD1 on Tfh and Tfr, both functional, and also to a lesser extent on T-cell exhausted (mainly T CD8)
- Therefore, targeting PD1 or PDL1 may lead to:
 - Depletion of protumoral Tfh (using anti-PD1 lgG1)
 - Stimulation of protumoral Tfh as well as anti-tumor CD8 Teff (using anti-PDL1 or anti-PD1 lgG4 type).
 - Urgent need for better knowledge of intratumor T-cell mandatory

CA 209-039 trial: Nivolumab Best Response and Durability

Tumor type	n	ORR	Median Follow-up in weeks	Median Response Duration in weeks	Ongoing Responses
Multiple Myeloma	27	1 (4%)	46	12+	1 (100%)
DLBCL	11	4 (36%)	23	22 (6 , 77+)	1 (25%)
Follicular NHL	10	4 (40%)	91	NR (27+ , 82+)	3 (75%)
CTCL/MF	13	2 (15%)	43	NR (24+ , 50+)	2 (100%)
PTCL	5	2 (40%)	31	NR (11 , 79+)	1 (50%)
Hodgkin Lymphoma	23	20 (87%)	86	NR (2,91+)	10 (50%)

74 weeks median follow-up

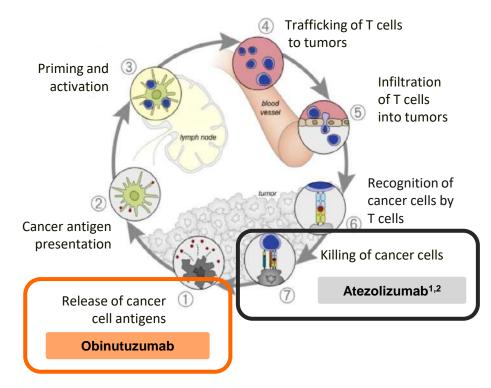


Armand et al, EHA 2015

R-pembrolizumab In relapsed R-sensitive FL

- 20 evaluable for response
- ORR was 65%
 (CR N=10/PR N=3)
- CR rate was 50%
- 3 patients with stable disease and 4 with progressive disease as best response

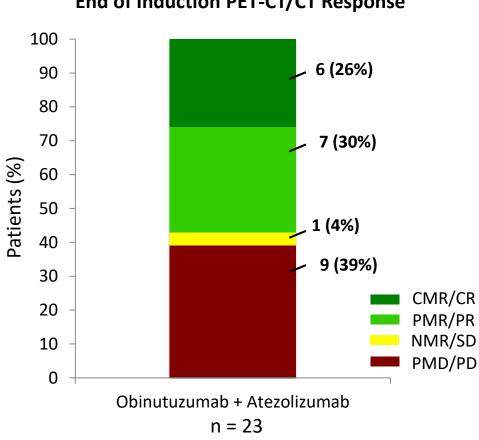
Best Response



Nastoupil et al, ICML2017, abstr 109

Scientific Rationale

Atezolizumab + Obinutuzumab in NHL



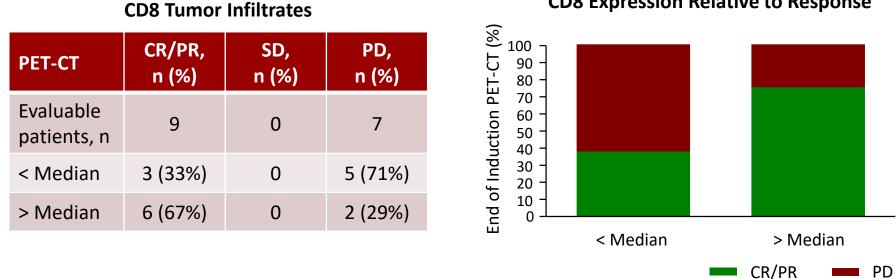
- Obinutuzumab, a glycoengineered type II anti-CD20 mAb, triggers enhanced ADCC and direct cell killing vs rituximab^{3,4}
 - Encouraging single-agent activity has been observed in R/R NHL⁵
- Atezolizumab, an engineered IgG1 mAb with an Fc domain modification to eliminate ADCC, selectively targets PD-L1 to prevent its interaction with PD-1 and B7.1, leading to reinvigorated anti-cancer immune responses^{1,2}
 - PD-L1 binding to PD-1 and B7.1 results in inhibition of anti-cancer T-cell activity^{2,6}
 - TILs and neoplastic cells in many lymphoma subtypes express PD-L1^{7,8}
- Atezolizumab + obinutuzumab may be a promising treatment option for heavily pretreated patients with R/R NHL due to their complementary mechanisms of action (activation of innate and adaptive immunity) and distinct safety profiles

ADCC, antibody-dependent cell-mediated cytotoxicity; PD-1, programmed death 1; PD-L1, programmed death-ligand 1; R/R, relapsed or refractory. 1. Herbst. Nature. 2014; 2. Chen. Immunity. 2013; 3. Tobinai. Adv Ther. 2017; 4. Ma. Cancer Manag Res. 2017; 5. Salles. J Clin Oncol. 2013; 6. Zou. Nat Rev Immunol. 2008; 7. Wilcox. Leuk Lymphoma. 2012; 8. Sznol. Clin Cancer Res. 2013.

Efficacy *Clinical Response in R/R FL*

Investigator-Assessed End of Induction PET-CT/CT Response

- 56% ORR (CMR + PMR) at the End of Induction response assessment
- 6 (26%) patients achieved CMR at End of Induction, with all patients achieving response (CMR/PMR) by the Mid Induction response assessment
- Median PFS was 311 days
 - 6-month PFS rate: 82%
 - 12-month PFS rate: 45%

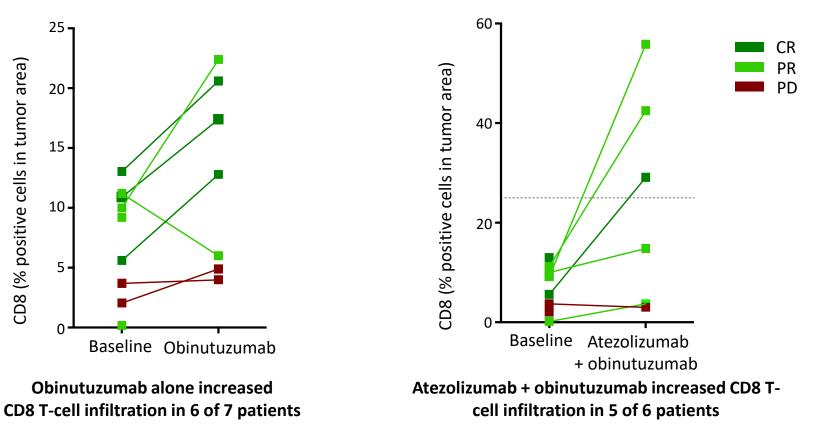


CMR, complete metabolic response; CR, complete response; NMR, no metabolic response; ORR, overall response rate; PFS, progression-free survival, PMD, progressive metabolic disease; PMR, partial metabolic response; PR, partial response; SD, stable disease.

Biomarkers

Response by Pre-Treatment

Pre-Treatment CD8 Tumor Infiltrates and Clinical Response in R/R FL

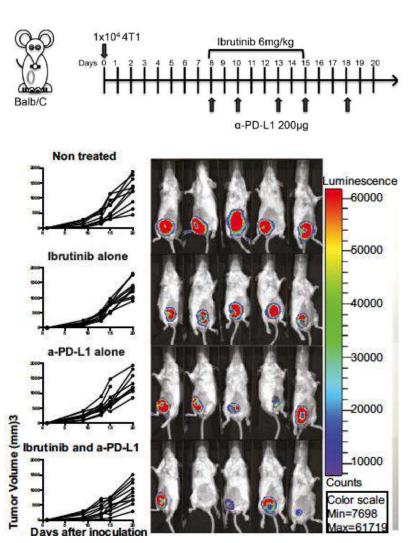

CD8 Expression Relative to Response

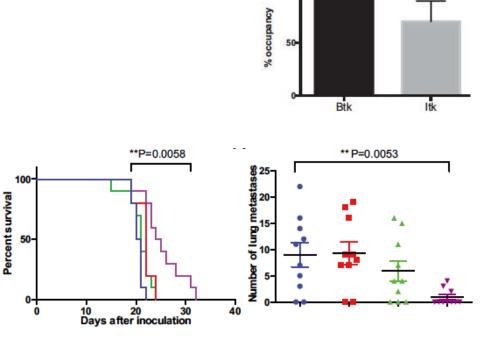
- Clinical response rate (PET-CT) was more than double among patients with FL with high pre-treatment CD8 tumor infiltrates
- 67% (6/9) of responding patients (PR/CR) had "high" CD8 staining vs 29% (2/7) of non-responding patients (PD)

Biomarkers

Changes in CD8 T-Cell Infiltrates in R/R FL

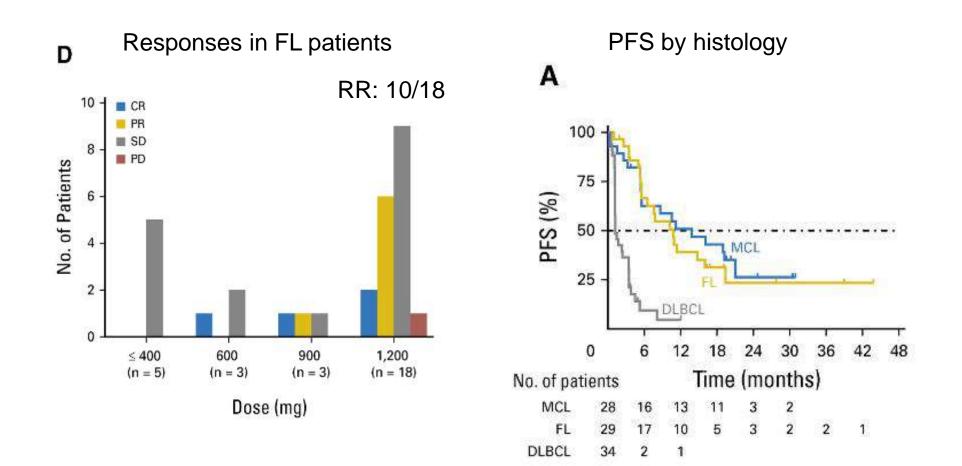
- Paired biopsies were obtained to compare baseline CD8 T-cell infiltration to infiltration following treatment with obinutuzumab (n = 7) or atezolizumab + obinutuzumab (n = 6)
- Elevated baseline CD8 T cells or CD8 T cell increase on-treatment correlated with response
- CD8 T cell increase seen with obinutuzumab may prime for atezolizumab response




2 BO29562 Obinutuzumab + Lenalidomide + aPDL1 *R/R FL*

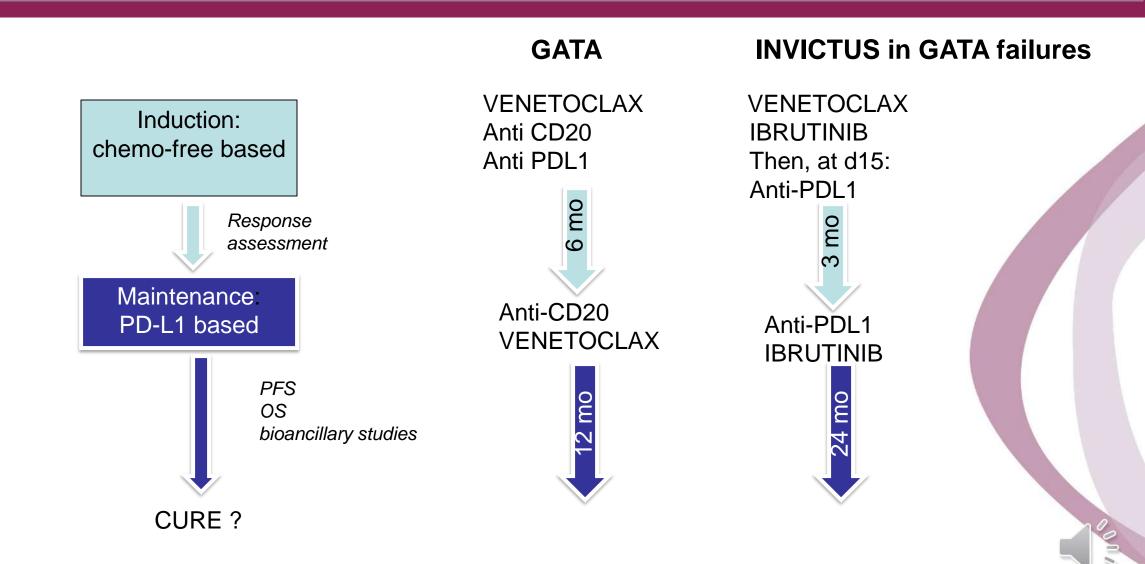
- Goal is to provide improved, chemo-free immunotherapy
- Increase clinical benefit by replacing systemic chemotherapy
- Potential to become best-in-class in R/R FL

Blocking PD-L1 and T-cell ITK rather than tumor kinase using ibrutinib

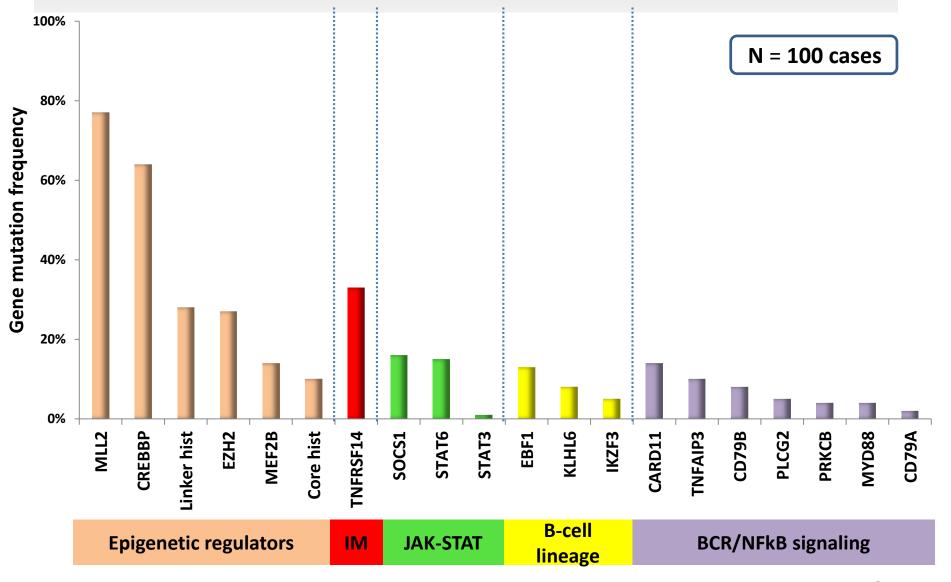

100

Of note:

Both α PD-L1 and ibrutinib have no efficacy lbrutinib doesn'tmodulate PD-L1 Combo is active on memoryT_{eff}, Re-challenge J90: tumor eradication

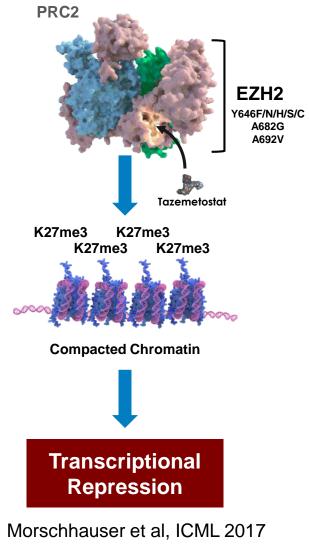

Ph I of venetoclax (oral anti-bcl2)

Davids M et al, JCO 2017



LYSA strategies in R/R CD20+ NHL: PD-L1 blockade + direct cell killing

Recurrently mutated (epi)genetic genes in FL

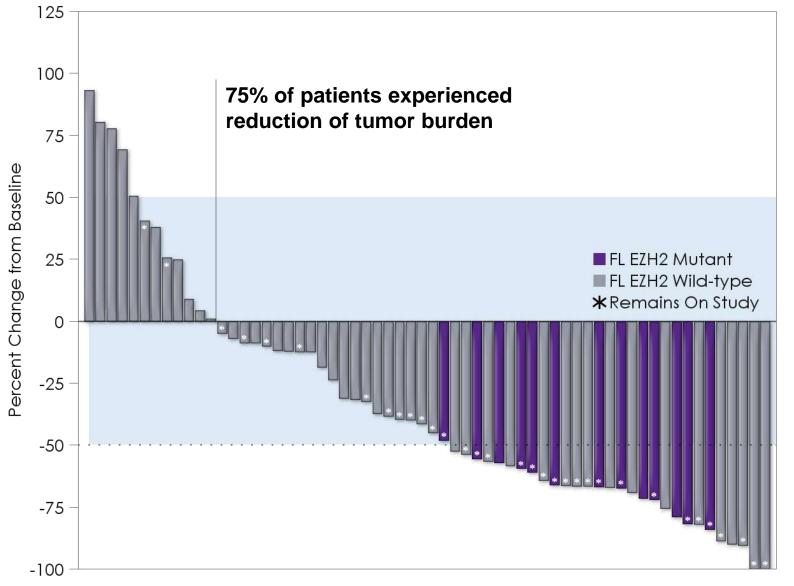


Okosun et al, ICML 2013

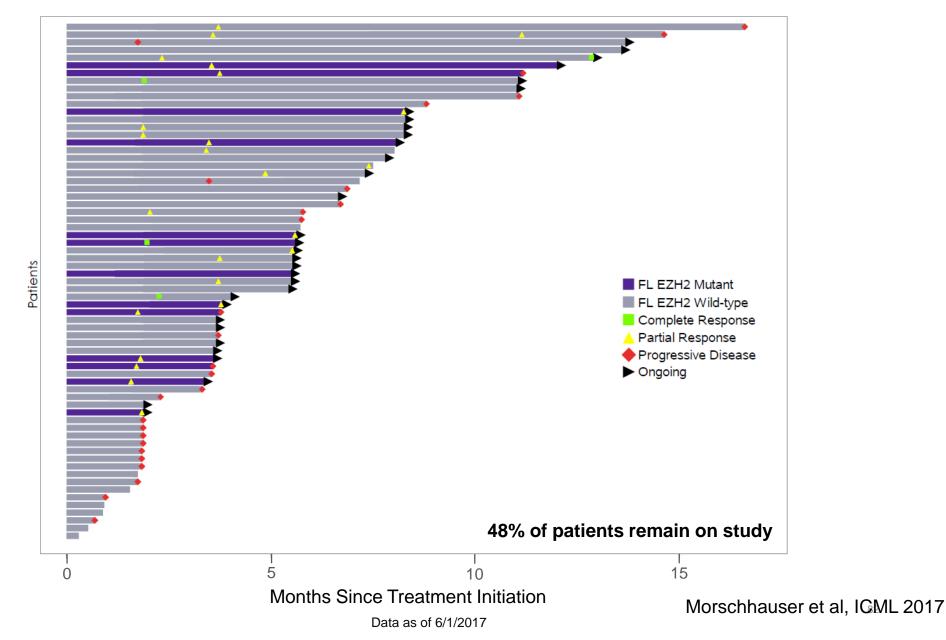
1

TAZEMETOSTAT FOR THE TREATMENT OF B-CELL NHL

- EZH2 is an epigenetic regulator of gene expression and plays a critical role in multiple forms of cancer
 - Activating mutations of EZH2 can act as an oncogenic driver for cancers, especially in FL and GCB-DLBCL, present in ~20% of patients
- Tazemetostat
 - First-in-class, potent and selective oral inhibitor of mutated and wild-type EZH2
 - Preclinical activity in DLBCL cells lines, with greater activity in EZH2 mutant models
 - Monotherapy activity and favorable safety in phase 1 studies in patients with relapsed or refractory (R/R) NHL, as well as certain genetically defined solid tumors



PHASE 2 NHL DEMOGRAPHICS & DISEASE CHARACTERISTICS


Characteristic		Follicular Lymphoma			DLBCL	
EZH2 Status		Mutant	Wild-type	Mutant	Wild-type	
n		13	54	17	120	
Age, median	years	62	61	61	69	
Males		46%	63%	53%	58%	
ECOG PS, median (range)		0 (0 - 2)	0 (0 - 2)	1 (0 - 2)	1 (0 - 2)	
Prior lines of therapy, n (%)	1	1 (8%)	0	0	3 (3%)	
	2	2 (15%)	11 (20%)	4 (24%)	40 (33%)	
	3	3 (23%)	9 (17%)	7 (41%)	28 (23%)	
	4	1 (8%)	14 (26%)	3 (18%)	18 (15%)	
	≥ 5	6 (46%)	20 (37%)	3 (18%)	31 (26%)	
	median	4	4	3	3	
Refractory to last regimen, n (%)		7 (54%)	26 (48%)	14 (82%)	75 (63%)	
Prior HSCT		23%	41%	41%	24%	
Median time from initial diagnosis	years	7.4	4.9	1.0	2.0	
Median time from last prior therapy	weeks	13.0	41.3	8.6	11.6	

Morschhauser et al, ICML 2017 Data as of 6/1/2017 Refractory to last regimen defined as SD or PD as best response to most recent prior therapy

TUMOR REDUCTION IN FOLLICULAR LYMPHOMA

DURATION OF TUMOR RESPONSE IN FOLLICULAR LYMPHOMA

Synergy With BCL2 Inhibitors

Mechanism	Drug	Mutant EZH2 GCB		WT EZH2 GCB			WT EZH2 ABC
		WSU- DLCL2	SU-DHL-10	DOHH2	OCI-LY19	SUDHL5	Toledo
Clussestiald	Prednisolone	Synergy	Synergy	Synergy	Synergy	Synergy	No effect
Glucocorticold	Dexamethasone	Synergy	Synergy	Synergy	Synergy	Synergy	No effect
	Navitoclax	Synergy	Synergy	No effect	Synergy	No effect	No effect
BCL2	Obatoclax	Additive	Additive	No effect	No effect	No effect	No effect
	ABT-199	Synergy	Additive	No effect	Synergy	No effect	No effect
	Everolimus	Synergy	Synergy	No effect	No effect	Synergy	No effect
	Trametinib	Synergy	Synergy	No effect	No effect	Synergy	No effect
	Bortezomlb	Additive	Additive	No effect	No effect	No effect	No effect
B-cell Receptor Pathway	MK-2206	Synergy	Synergy	No effect	Synergy	Synergy	No effect
, , , , ,	Ibrutinib	Synergy	Synergy	No effect	No effect	Synergy	No effect
	ideialisib	Synergy	Synergy	No effect	No effect	Synergy	No effect
	Tamatinib	Synergy	Synergy	No effect	No effect	Synergy	No effect

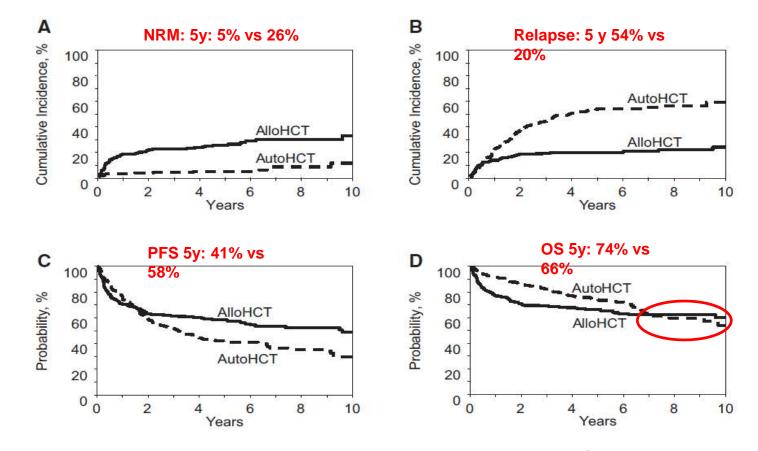
Main questions in the treatment of R/R FL

– ASCT or not ASCT as part of second-line?

If yes, for whom?

– New anti-CD20 MoAbs?

Why can they overcome resistance to rituximab?


– New agents beyond anti-CD20?

Targeting both tumor and immune contexture

– Allo SCT or CART cells: who and when?

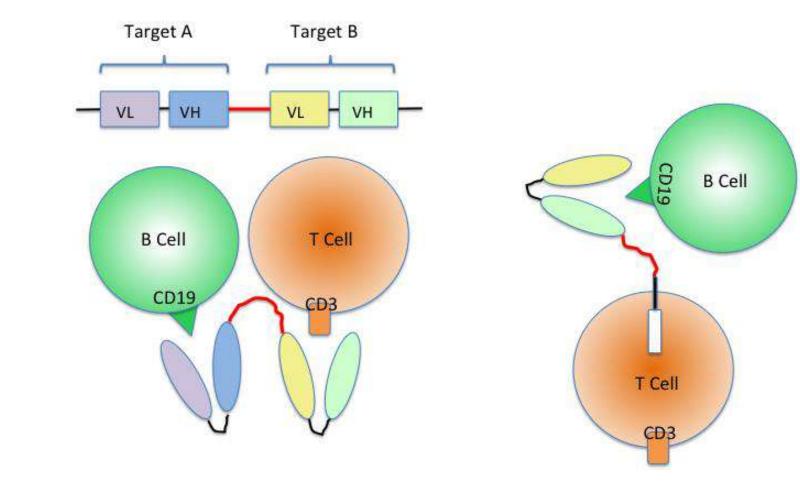
L'allogreffe

LF en rechute, auto- ou allogreffe comme première transplantation

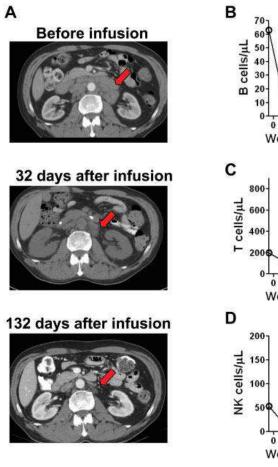
Klyuchnikov et al, BBMT 2015

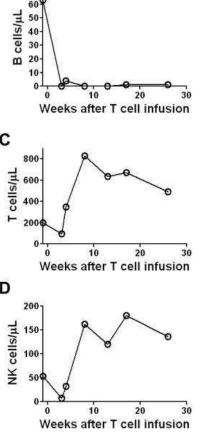
EBMT RIC-allogeneic transplant in FL

Study	3-yr TRM	3-yr RR	3-yr OS	3-yr EFS/PFS	cGVHD
Robinson, 2002	31%	20%	65%	54%	16% (ext: 9%)
Morris, 2004	11%	44%	73%	65/49%	7% (+ 20% post DLI)
Vigouroux, 2007	40%	10%	56%	51%	43% (ext: 20%)
Rezvani, 2007	40%	14%	52%	43%	Ext: 47%
Khouri, 2008	NR	NR	85%	83%	60% (ext: 36%)
Hari, 2008	28%	17%	62%	55%	62%
Ingram, 2008	20%	20%	69%	58%	20%
Thomson, 2010	15% /8%	26% /25%	76% /90	76% /87	Ext: 32% (incl post DLI) /11% (30% post DLI ⁾
Piñana, 2010	37%	8%	57%	55%	Ext: 53%


3-yr TRM: 20-30%, 3-yr RR: 15-20%, 3-yr OS: 50-65%, 3-yr PFS: 50-60%

Direct recruitment of T-cells against B-cell lymphoma


A. Bispecific T Cell Engager (BiTE)


B. Chimeric Antigen Receptor (CAR)

CAR-T cells clinical results

NCI, Bethesda Responses in relapsed patients

4/5 FL

7/8 CLL 6/7 DLBCL (4 CR)

3/10 pat in relapse after allo-BMT (donor-derived CAR-T)

Side effects:

- Severe hypotensions
- Severe neurologic

BiTE for the treatment of R/R FL

- Phase I-II of BiTE (blinatumomab) in R/R NHL
- Dose escalation 0.5 to 90 ug/m2/day (MTD = 60 ug)
- Continuous infusion through portable mini-pump for 4-8 weeks

Toxicity: 22% grade 3 neurologic events (reversible)

In 15 R/R FL: RR 80% (6 CR + 6 PR)

Conclusions

- ASCT better option in HT
- G-Benda and other G-based combinations challenge ASCT in Refractory FL
- Urgent need to better understand the biology to impact treatment choice
- New strategies should target both the microenvironement and the tumor
- The future of new agents is in combination.
- Allo-SCT or CART-cells after 3 lines including G and new agents

